
Precise Correlation Extraction for IoT Fault Detection with
Concurrent Activities

GYEONGMIN LEE, Samsung Advanced Institute of Technology, Republic of Korea
BONGJUN KIM, POSTECH, Republic of Korea
SEUNGBIN SONG, Yonsei University, Republic of Korea
CHANGSU KIM, POSTECH, Republic of Korea
JONG KIM, POSTECH, Republic of Korea
HANJUN KIM, Yonsei University, Republic of Korea

In the Internet of Things (IoT) environment, detecting a faulty device is crucial to guarantee the reliable
execution of IoT services. To detect a faulty device, existing schemes trace a series of events among IoT
devices within a certain time window, extract correlations among them, and find a faulty device that violates the
correlations. However, if a few users share the same IoT environment, since their concurrent activities make
non-correlated devices react together in the same time window, the existing schemes fail to detect a faulty device
without differentiating the concurrent activities. To correctly detect a faulty device in the multiple concurrent
activities, this work proposes a new precise correlation extraction scheme, called PCoExtractor. Instead of
using a time window, PCoExtractor continuously traces the events, removes unrelated device statuses that
inconsistently react for the same activity, and constructs fine-grained correlations. Moreover, to increase the
detection precision, this work newly defines a fine-grained correlation representation that reflects not only sensor
values and functionalities of actuators but also their transitions and program states such as contexts. Compared
to existing schemes, PCoExtractor detects and identifies 40.06% more faults for 4 IoT services with concurrent
activities of 12 users while reducing 80.3% of detection and identification times.

CCS Concepts: • Hardware → Emerging languages and compilers; • Security and privacy → Intru-
sion/anomaly detection and malware mitigation.

Additional Key Words and Phrases: Internet of Things, Anomaly Detection, Compiler

ACM Reference Format:
Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim. 2021. Precise
Correlation Extraction for IoT Fault Detection with Concurrent Activities. 1, 1 (September 2021), 22 pages.
https://doi.org/

1 INTRODUCTION
The proliferation of the Internet of Things (IoT) enables fascinating services such as home automation
and a smart laboratory service. The IoT services collect physical states of a user environment from
sensors, compute environment contexts such as occupancy of home and emergency state, and control

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Embedded Software (EMSOFT), 2021.
Authors’ addresses: Gyeongmin Lee, Samsung Advanced Institute of Technology, Republic of Korea, gm05.lee@samsung.
com; Bongjun Kim, POSTECH, Republic of Korea, bong90@postech.ac.kr; Seungbin Song, Yonsei University, Republic of
Korea, seungbin@yonsei.ac.kr; Changsu Kim, POSTECH, Republic of Korea, kcs9301@postech.ac.kr; Jong Kim, POSTECH,
Republic of Korea, jkim@postech.ac.kr; Hanjun Kim, Yonsei University, Republic of Korea, hanjun@yonsei.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2021/9-ART $15.00
https://doi.org/

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/ 
https://doi.org/ 


2 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

Temps

…

AirCond.

if [Room.isOccupied] then 
if [isHot] then executeCooling()
elif [isCold] then executeHeating()
elif [!isHot && !isCold] then turnOffAC()

isHot: Tavg > TupperTh isCold

Motions Vibrations Door

…

Room.isOccupied

if [Entrance.isOccupied] then 
if [isDark] then turnOnBulb()

isDark: illum < IupperThEntrance.isOccupied

Illum.

…

Bulb

Fig. 1. IoT services: smart HVAC and smart light.

actuators such as smart bulb or air conditioner to provide predefined services for users. Figure 1
illustrates two IoT service examples such as a smart HVAC and a smart light. Multiple IoT sensors
such as motion, vibration, door, and temperature sensors measure various physical states of the
user environment. With the measured values, the smart HVAC service computes contexts such as
Room.isOccupied, isHot, and isCold, and controls the air conditioner.

Despite the convenience of IoT services, a fault of an IoT device degrades the quality of the services
and may cause crucial inconvenience. For example, if a door contact sensor in Figure 1 generates
wrong data due to its fault, the smart HVAC service cannot correctly compute the isOccupied
context. The wrong isOccupied value may unnecessarily activate the air conditioner, and thus
causing excessive electricity bills. Therefore, detecting a faulty device in IoT environments is crucial
to guarantee reliable execution of IoT services.

Faulty devices make problems not only disconnected from IoT services but sending wrong sensor
values to the IoT services without disconnection. Therefore, the fault detection scheme should
compare the values to find whether they satisfy trends of value increment over time or correlations
between each other. Existing work [6, 19, 20, 25, 45–47] proposes correlation-based IoT fault
detection schemes. FailureSense [25] and CLEAN [45–47] extract correlations between sensor-
actuator or sensor-sensor and detect failures of binary sensors. SMART [19] and Idea [20] analyze
correlations between sensors and user activities based on activity recognition techniques, and detect
binary and numeric sensor failures. DICE [6] extracts a correlation as a set of device activation
statuses, checks transitions between the correlations, and detects and identifies failures of generic
devices.

However, applying the existing schemes to real-world IoT environments is challenging due to
concurrently occurred multiple activities from multiple users. First, since they analyze correlations
using a time window and assume that there exists at most one activity in a time window, they
cannot differentiate multiple activities in the same time window. Second, since they trace only the
occurrence of device reactions without inspecting the reasons why the devices react, they cannot
differentiate activities that cause different reactions such as opening a door and leaving a door open.
Third, although the same activity may cause different reactions depending on its contexts like room
occupancy, the existing schemes do not reflect the contexts in the high level information into the
correlation. Finally, since they include all the devices in the IoT environment in a correlation, a
reaction of an non-correlated device causes a false-positive faulty device detection.

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 3

Smart Home

(A) Cooking (B) Enter

Motion.1Temp.1

Air 
Conditioner

Air 
Purifier

Temp.2 Vib.1

Bulb

Motion.2

Door.1

Door.2

Illum

(a) Floor plan of the smart home for Figure 1

Contexts

Temp.1

28°C

IsHot

True

Room.IsOccupied

True

Events

AirCond.

Cooling

Bulb

LightOn

Door.2

Open

Door.2

Closed

Motion.2

Detected

Enterance.IsOccupied

True

Illum

12

IsDark

True

Motion.1

Detected

Time

Time

Predefined Time Window (Tw)

(b) Observed events at the smart home in Fig-
ure 2a

Fig. 2. Up-arrow means an event that is transferred from a device to the IoT platform, and down-arrow
means the opposite.

To precisely detect and identify a faulty device in real-world environments, this work proposes
a new compiler-assisted correlation extraction scheme, named PCoExtractor. This work designs
a fine-grained correlation representation that reflects various reaction types of IoT devices and
program status such as contexts. To easily reflect the high level information in service programs,
the PCoExtractor compiler automatically extracts contexts and analyzes correlated devices in the
programs. The PCoExtractor runtime continuously traces reactions of sensors, actuators, and contexts
during a series of multiple concurrent activities without any time window, excludes non-correlated
devices that inconsistently react for the same activities, and constructs fine-grained correlations.
Finally, the runtime detects a faulty device if finding an abnormal event pattern that violates trained
correlations.

This work implements the PCoExtractor, compiler-assisted correlation extraction scheme on top
of the LLVM C++ compiler infrastructure [22]. To evaluate the PCoExtractor, this work implements
4 IoT real-world services and collects data from the smart laboratory with 12 users for more than
40 days. Compared to existing schemes, PCoExtractor detects and identifies 40.06% more failures
consisting of both fail-stop and non-fail-stop failures with concurrent activities. Moreover, the
PCoExtractor reduces 80.3% of detection and identification time with only 181.7 𝜇s delay on
average.

The contributions of this paper are:

• the fine-grained correlation representation that reflects various reaction types of IoT devices
and program contexts,

• the PCoExtractor compiler that automatically extracts contexts and correlations defined in IoT
services,

• the PCoExtractor runtime that excludes non-correlated devices from a correlation, and precisely
and efficiently detects and identifies a faulty device in real-world environments with multiple
concurrent user activities, and

• in-depth evaluation with real-world IoT services and data collected with 12 people for more
than 40 days.

2 MOTIVATION
This section describes existing faulty device detection schemes and their limitations with a simple
IoT environment example, as shown in Figure 2a. Figure 2b shows time series of observed events in
the smart home with two users, A and B. User A performs a user activity cooking in the kitchen,
and black sticks and arrows in Figure 2b illustrate events triggered by cooking. User B enters the
house, and gray sticks and arrows in Figure 2b show events triggered by the entrance.

, Vol. 1, No. 1, Article . Publication date: September 2021.



4 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

Data Collection

Door.2

Door.2

Motion.2

Motion.1

Illum

Temp.1

Bulb

AirCond. 

Open

Closed

Detected

Detected

12

28°C
LightOn

Cooling

t1

t2

t3

t4

t5

t6

t7

t8
… … …

1 1 1 0 0 0 1 1 1 1 0

Door.2 Illum. Bulb

0 0 0 1 0 0 1 1 1 0 1

1 0 0 1 0 0 0 0 1 0 0

… …

Possible Correlations (cDB) Possible Correlation Transitions (tDB)1 0 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0 0G1

G2

G3

1 1 1 0 0 0 1 1 1 1 0

0 0 0 1 0 0 1 1 1 0 1

…

UID Bit Vector (Correlation) 1 0 0 1 0 0 0 0 1 0 0G1

→

1 1 1 0 0 0 1 1 1 1 0G2

G2 → G3 |   G3 → G1 |   G1 → G7

…

Constructed Correlations Trained Correlations

P
re

d
e
fi

n
ed

 T
im

e 
W

in
d

o
w

 (
T

w
)

‘Entrance’ and ‘Cooking’ are occurred

(a) Correlation Training Phase

Observed Event Series in Tw

Door.2

Door.2

Motion.2

Illum

Bulb

Open

Closed

Detected

12

LightOn

t1

t2

t3

t4

t5

1 0 1 0 0 0 0 0 0 1 0

Door.2 Bulb

Constructed Current Correlation

Check

violations

T
w

‘Entrance’ is occurred

Motion.2
G1 → G2

G2 → G3

G3 → G1

G1 → G7

…

? 1 0 1 0 0 0 0 0 0 1 0

Faulty Device Detection

Previous Observed Correlation: G1
G1

G2

G3

G4

…

cDB
Temp.1 AirCond.Motion.1

Illum.

To avoid false positive error, the system must train 

all possible combinations for all concurrent activities tDB

1 0 0 1 0 0 0 0 1 0 0

(b) Faulty Device Detection Phase

Fig. 3. Overall process of existing faulty device schemes. 𝐺𝑥 in Figure means unique ID for each
trained correlation.

1 /* *** Occupancy Checker Example *** */
2 subscribe(door.contact,doorHandler)
3 subscribe(motion.detected,presenceHandler)
4 subscribe(vibration.detected,presenceHandler)
5
6 def doorHandler(evt) {
7 if(evt.value == open) {
8 state.uncond = false
9 state.isDoorClosed = false

10 } else {
11 state.isDoorClosed = true
12 runIn(20,checkNotOccupied)
13 } }
14
15 def presenceHandler(evt) {
16 /* evtHandler for positive value transition
17 of motion & vibration sensors */
18 if(state.isDoorClosed && !state.uncond) {
19 if(state.isOccupied == false) {
20 state.uncond = true
21 state.isOccupied = true
22 turnOnHVAC()
23 } } }
24
25 def checkNotOccupied(){
26 if(!state.uncond && state.isDoorClosed) {
27 if(state.isOccupied) {
28 state.isOccupied = false
29 turnOffHVAC()
30 } } }

Fig. 4. Example codes of Occupancy Checker that computes isOccupied context in Figure 1.

2.1 Correlation-based Faulty Device Detection
To guarantee the reliable execution of IoT services, existing work [6, 19, 20, 25, 45–47] proposes
correlation-based faulty device detection schemes. Figure 3a shows how the existing schemes extract

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 5

correlations by training a series of events. First, they collect a series of raw event data within a
predefined time window (𝑇𝑤). Then, they construct a correlation as a bit vector, each bit of which
represents an event occurrence for each device. For example, the first bit of the bit vector represents
the event occurrence of the door sensor (Door.2). If there is an event from the door sensor during 𝑇𝑤 ,
the schemes set the first bit as 1. After constructing the correlation bit vectors, the existing schemes
assign a unique id for each correlation (𝐺𝑥 ), train meaningful correlations with the constructed
correlations, and record meaningful correlations with their unique id into a possible correlation
database (cDB). Moreover, they train the transition between the correlations over time with a possible
transition database (tDB).

At runtime, with the two generated databases, the existing schemes detect a faulty device (Figure 3b.
First, they construct a correlation with a bit vector from observed events during 𝑇𝑤 . To detect a
faulty device, they check whether the current constructed correlation exists in the possible correlation
database (cDB). Since the possible correlation database contains observed correlations from training
data, if there is no same correlation in the cDB, existing schemes regard one of the correlation bits
and its corresponding device faulty. After checking the cDB, they check whether a transition from
the previous to the current correlations is valid with the possible correlation transition database (tDB).
If the existing schemes detect a fault during the detection phase, they try to identify which device is
faulty.

2.2 Limitations of Existing Schemes
Although the existing faulty device detection schemes [6, 19, 20, 25, 45–47] extract correlations
among IoT devices and detect a faulty device that violates the trained correlations, they are not
suitable for real-world IoT environments with multiple concurrent activities due to following four
reasons.

Coarse-grained time unit: The existing schemes cannot distinguish multiple activities in the
same time window due to the coarse-grained time unit. Figure 3a shows how the existing schemes
construct the correlation with training data. The schemes observe events from the devices during
𝑇𝑤 and generate a bit vector that represents a correlation. However, the generated bit vector embeds
two activities that have a causal relation. For example, ‘LightOn’ of the bulb depends on the events
‘Motion.2’, ‘Door.2’, and ‘Illum’ due to the smart light service. Although the ‘LightOn’ event should
be reported after the three events, the existing schemes consider all the events occurred at the same
time, so may miss a fault such as the bulb ‘LightOn’ before the ‘Motion.2’ event.

Limited correlation representation: Due to their limited correlation representation on events and
their reactions, the existing schemes cannot differentiate different activities. For example, the existing
schemes represent ‘Opening a door’, ‘Leaving a door open’, ‘Closing a door’, and ‘Leaving a door
closed’ events with a bit value 1 in their correlation. Thus, the existing schemes do not distinguish
different events on an IoT device like ‘Door.2’. Even if the ‘Door.2’ has a fault and generates ‘Closed’
event instead of ‘Open’, the schemes cannot detect the fault of the ‘Door.2’ event due to its limited
correlation representation.

Context oblivious correlation: The existing schemes construct their correlations only using raw
event data without reflecting the program status such as contexts. Disregarding the contexts in corre-
lation construction may cause extracting imprecise correlations because the same activity may cause
different reactions depending on its contexts like room occupancy. For example, ’Motion1.Detected’
is a valid event when Room.isOccupied is true, but ’Motion1.Detected’ means a fault when
Room.isOccupied is false.

However, since the existing schemes do not reflect the contexts in their correlations, they cannot
recognize the difference and cannot catch the fault. For example, Figure 4 explains how IoT services
compute the context isOccupied for the room. The event handlers in Figure 4 check all events

, Vol. 1, No. 1, Article . Publication date: September 2021.



6 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

value tran. trend value cluster value tran.

0 0 0 1 0 0 0 1 0 0 0 00 0 0

value tran.

0 0 0 1 0 0 0 1 0 0 0 01 1 0

Room / motion / detected

0 0 0 1 0 0 0 1 0 1 1 01 0 0

Context / Room.isOccupied / true

ti

tj

tk

Room

motion

Door

contact

Thermometer

temperature

Context

Room.isOccupied

Fig. 5. Fine-grained event representation of Fig. 1 using bit vector.

from door, motion, and vibration sensors with subscribe function. If there is an event from motion or
vibration sensors while the room is sealed, then there is at least one person in the room. Moreover,
the context isOccupied is unconditionally true until opening the door (state.uncond). When
a user opens the door, then the doorHandler function initializes the value of state.uncond. When
the user closes the door, the doorHandler function sets the timer to check that the room is not occupied
if there is no motion or vibration event for 20 seconds (at line 12). Although there is a state variable
state.isOccupied that reflects the context isOccupied, existing schemes do not have any
APIs, programming model, or compiler to extract the contexts in the source codes.

False-positive correlations from non-correlated devices: In real-world environments with con-
current activities, multiple users perform independent activities concurrently. To detect a faulty
device in real-world environments, the existing schemes should train all possible combinations of
user activities that cause various constructed correlations. Moreover, two correlations overlapped in
various ways cause a large number of possible correlations. With limited training data, the existing
schemes may not extract and train correlations sufficiently to detect a faulty device. For example,
Figure 3b shows how existing schemes detect a faulty device. The existing schemes try to train not
only correlations between actually correlated devices such as ‘Door.2’, ‘Motion.2’, ‘Illum’, and
‘Bulb’, but also non-correlated devices such as ‘Illum’ and ‘Motion.1’ in Figure 2a. Due to the gray
bits in Figure 3b that represent the status of non-correlated devices, existing schemes need a huge
amount of training data and may fail to detect a faulty device with false-positive errors.

3 FINE-GRAINED CORRELATION REPRESENTATION
To enhance the expressiveness of the correlation, this work newly defines a fine-grained correlation
representation. The proposed correlation representation reflects fine-grained events from generic
sensors, actuators, and contexts.

Binary sensor: A binary sensor is a sensor that measures a physical reaction that can be quantized
to a Boolean value. For example, a motion sensor in Figure 1 senses a motion event and represents the
value as motion-is-detected or motion-is-not-detected. Although the existing schemes only consider
the occurrence of events with a bit, this work analyzes fine-grained events from a binary sensor and
uses three bits that represent the value and its positive and negative transitions. The first bit represents
the current status of the binary sensor. If a motion sensor senses the event detected, then the value
is set with detected until the motion sensor senses not-detected. A positive transition means the
transition of the sensor value from false to true. In the case of the motion sensor, if the value changes
from not-detected to detected, the positive transition becomes true. Conversely, a negative transition
represents the value changes from true to false.

Numeric sensor: A numeric sensor is a sensor that measures a specific degree with a numeric
value. Existing work [25, 45–47] does not consider numeric sensor and other approaches [19, 20]
only consider the occurrence of event. DICE [6] reflects three features of a numeric sensor such as

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 7

skewness, increasing or decreasing trends, and whether the value exceeds the mean value. However,
none of them directly uses an actual value of the numeric sensor even though the actual value of
the numeric sensor is strongly correlated with other events. For example, the temperature of the
thermometer in Figure 1 is directly correlated with the context isHot. Thus, PCoExtractor reflects an
actual value and its increasing or decreasing trend to indicate fine-grained events from a numeric
sensor. PCoExtractor uses a clustering algorithm with training data to generate a flexible number of
clusters and represents each cluster with a bit. If a value of a numeric sensor belongs to a specific
cluster, then the bit that represents the cluster is set. Moreover, PCoExtractor uses additional two
bits to represent the value that is smaller than the minimum value and larger than the maximum
value. Also, PCoExtractor uses another bit to indicate an increasing or decreasing trend of value. If a
numeric sensor generates a larger value than the previous event, then the bit is set.

Actuator: An actuator has various functionalities such as cooling and heating. Each functionality
has different semantics and physical impacts. For example, an air conditioner in Figure 1 has
two functionalities, cooling and heating. When the home is occupied and hot, then smart HVAC
service executes cooling. Thus, cooling is correlated with the contexts such as isOccupied and
isHot. Moreover, cooling lowers the temperature of the home. Therefore, cooling is also correlated
with the decreasing trend of temperature of thermometer. However, heating is correlated with
isCold and increasing trend of temperature instead of isHot and decreasing trend of temperature.
Therefore, PCoExtractor assigns a bit for each function of actuator to reflect its different semantics
and correlations.

Context: PCoExtractor categorizes a context as a binary sensor or numeric sensor. The contexts
such as isOccupied and isHot are binary contexts and a context like discomfort index are numeric
contexts. PCoExtractor assigns bits for a context using the same scheme with binary and numeric
sensor.

As a result, PCoExtractor generates a bit vector for each event to represent fine-grained events
from IoT devices. Figure 5 shows an example of fine-grained correlation representation. When the
room motion sensor detects a motion at time 𝑡 𝑗 , two bits that represent value and positive value
transition of desk motion sensor are set with 1. Then, smart HVAC service computes the occupancy
of the room and changes the value and positive transition bits of context Room.isOccupied to 1. The
positive transition bit of the room motion sensor is automatically set with 0.

4 PCOEXTRACTOR COMPILER
The PCoExtractor compiler analyzes IoT services and extracts contexts to support fine-grained
correlation representation in Section 3. Moreover, the PCoExtractor compiler extracts statically
defined correlations in IoT services to remove false-positive correlations.

4.1 Programming Model of PCoExtractor
Context-aware programming models play an important role in IoT environments because existing
work [11, 15, 18, 31, 34, 49] emphasizes the importance of context-awareness in many fields such as
security and fault-tolerance of IoT services. To support context-awareness, commercial platforms [1,
16, 17, 28, 35] and existing researches [15, 31, 32, 49] propose context-aware programming models.
To implement the PCoExtractor compiler with context-aware programming model, this work adapts
the programming model of Samsung SmartThings [35].

With an annotation, the PCoExtractor compiler allows programmers to implement a context-aware
IoT service that consists of two types of applets such as Service Logic and Context Generator.
The PCoExtractor compiler supports SmartThings [35] like event-driven programming models to
implement both types of applets. First, the PCoExtractor compiler allows programmers to implement
the main logic of the service with multiple event handlers that react to events from IoT devices and

, Vol. 1, No. 1, Article . Publication date: September 2021.



8 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

1 /* *** Smart HVAC Example *** */
2 subscribe(Occupancy,occupancyHandler)
3 subscribe(isHot,hvacHandler)
4
5 /* Senses the changes of "Occupancy" variable and tries to control HVAC */
6 /* "controlHVAC" function checks the value of state.isHot and control the air conditioner*/
7 def occupancyHandler(evt){
8 if(evt.value)
9 controlHVAC()

10 ... }
11
12 /* Senses the changes of "isHot" variable from TempChecker (CtxGenerator)
13 and sets the global variable "state.isHot" */
14 def hvacHandler(evt) {
15 if(evt.value == "hot")
16 state.isHot = true
17 else if(evt.value == "cold")
18 ... }
19
20 /* *** Occupancy Checker Example *** */
21 CtxDecl(Occupancy,state.isOccupied)
22
23 subscribe(motion.detected,presenceHandler)
24 subscribe(vibration.detected,presenceHandler)
25
26 def presenceHandler(evt) {
27 if(state.isDoorClosed && !state.uncond) {
28 if(state.isOccupied == false) {
29 state.uncond = true
30 state.isOccupied = true
31 } } }
32
33 def checkNotOccupied(){
34 if(!state.uncond && state.isDoorClosed) {
35 if(state.isOccupied) {
36 state.isOccupied = false
37 } } }

Fig. 6. Example codes of smart HVAC service and Occupancy Checker implemented with PCoExtrac-
tor.

contexts. Figure 6 shows an example of smart HVAC service source codes. The service subscribes
fine-grained events from IoT devices or contexts, as shown in lines 2 and 3 in Fig. 6. Moreover,
occupancyHandler and hvacHandler functions define the main logic of the smart HVAC
service. Second, the PCoExtractor compiler allows programmers to implement a special type of applet,
Context Generator. A Context Generator applet declares and defines a context with multiple event
handler functions that compute the context. For example, the programmers implement an occupancy
checker applet as a Context Generator to compute the occupancy of a room. With an annotation,
CtxDecl, programmers can declare and define a new context with a context id and a variable that
contains a value of the context. For instance, the PCoExtractor compiler allows programmers to
declare and define a new context with ‘Occupancy’ as context id and ‘state.isOccupied’ as a variable
that contains the value of ‘Occupancy’. The PCoExtractor compiler automatically inserts code to
publish fine-grained events from contexts, and subscribers such as the smart HVAC service can
subscribe to fine-grained events of contexts with the existing subscribe function.

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 9

IoT Application Source Codes

Parser

Static Correlation Extraction 

Program Dependence Analysis 

Code 

Insertion

Inter- & Intra-

Applet PDG

turnOnHVAC (isCold, isHoT)

cooling

motion:p-tran

Static

Correlation

Extraction

Context 

Metadata

Extraction

CtxDecl(Occupancy, state.isOccupied)

Context Generator Source Codes

Context List = [isHot, …] + Occupancy

PDG Generation • Data / Control Dependences

CtxValueMap[Occupancy] = “state.isOccupied”

presenceHandler (Occupancy)

motion.detected vibration.detected

vibration:p-tran

Occupancy Checker

occupancyHandler (Occupancy)

Smart HVAC

Occupancy: p-tran & val

heating

isHot:valisCold:val

Occupancy

motion[p-tran] vibration[p-tran] contact[val]

Occupancy[p-tran & val] isHot[val] isCold[val]

cooling

state.isOccupied = true

state.isOccupied = true

Publish(Occupancy,state.isOccupied)

Code Transformation 

Inter-Applet

Intra-Applet

publish(Occupancy)

Fig. 7. Overall structure of the PCoExtractor compiler. In program dependence analysis, “A -> B”
means that B depends on A.

4.2 Overall Structure
The PCoExtractor compiler consists of four modules such as a parser, program dependence analysis,
static correlation extraction, and code transformation. The parser extracts context information from
source codes and the static correlation extraction module extracts static correlation using the program

, Vol. 1, No. 1, Article . Publication date: September 2021.



10 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

dependence analysis module. The code transformation module inserts communication codes to
deliver contexts across the applets.

4.3 Context Extraction
To extract contexts from the source codes, the parser parses the annotation, CtxDecl. CtxDecl declares
and defines a context with a string identifier and a variable that represents a value of the context.
First, the parser generates a context list which is a list of context identifiers. Second, the parser
builds a key-value map that has a context identifier as key and variable identifier as value. With
the context list, the PCoExtractor runtime recognizes the contexts to reflect fine-grained events of
the contexts. Moreover, the program dependence analysis module takes the context value map to
generate a program dependence graph (PDG) with fine-grained events. The parser in Figure 7 shows
an example of the parsing process with the ‘Occupancy’.

4.4 Static Correlation Extraction
To extract statically defined correlations from the services, the PCoExtractor compiler has program
dependence analysis and static correlation extraction modules.

For the first step, the program dependence analysis module generates a program dependence graph
with intra-applet control and data dependence. Unlike usual PDG, the program dependence analysis
module marks every vertex in PDG with fine-grained events of IoT devices or contexts. For example,
’state.isOccupied’ depends on events from motion and vibration sensors because subscribe functions
at lines 19 and 20 in Figure 6 subscribe ’detected’ events from motion and vibration sensors. Thus,
the positive transition event of ’Occupancy’ triggered by line 26 in Figure 6 is correlated with positive
transition events of motion and vibration sensors. If the subscribe function monitors general events
like line 3 in Figure 6, then the program dependence analysis module treats that handler function
depends on both positive and negative transition events. With this procedure, the program dependence
analysis module generates multiple intra-applet PDG with fine-grained events as shown in Figure 7.

Second, the program dependence analysis module analyzes inter-applet dependence caused by
contexts and generates inter-applet PDG. The program dependence analysis module checks a context
value map from the parser and searches the instructions that define the values of the contexts. If there
is any write instruction for the value of the context in a target applet, then the program dependence
analysis module sets a dependence between the target applet and an applet that subscribes the
context. For example, the occupancy checker in Figure 6 modifies the value of ’Occupancy’ with
an instruction at line 26 and smart HVAC service subscribes the events of ’Occupancy’ with the
subscribe function call at line 3. Then, the program dependence analysis module sets a dependence
between an instruction at line 26 and ’occupancyHandler’ function in smart HVAC service. Finally,
the program dependence analysis modules generate inter- and intra-PDG as shown in Figure 7.

For the final step, the static correlation extraction module extracts correlations between fine-grained
events using generated PDG. With marked fine-grained events, the static correlation extraction module
recursively visits child nodes of target event and accumulates marked fine-grained events to generate
new static correlations. For example, ’cooling’ event depends on the value of the ’isHot’. To execute
’cooling’ event, smart HVAC service must execute ’turnOnHVAC’ and ’occupancyHandler’. Since
the execution of ’turnOnHVAC’ depends on the value and positive transition of the ’Occupancy’
context, ’cooling’ is correlated with them either. Finally, the static correlation extraction module
extracts all static correlations among fine-grained events.

4.5 Finalization
To finalize the compilation and generate executable binaries, the code transformation module in-
serts communication codes for context and compiles the source codes into the binaries. The code

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 11

1 0 1 1 1 0 0 0 1 0 0 1

0 0 1 1 1 0 0 0 1 0 0 1

0 1 1 1 1 0 0 0 1 1 0 1

0 0 1 0 1 0 1 1 1 0 1 1

0 0 1 0 1 0 1 0 1 1 1 1

0 1 1 0 1 0 1 0 1 1 1 1

1 0 1 0 1 0 0 0 1 1 1 1

1 0 1 0 1 1 0 0 1 0 0 0

time E2E1 E3 E4
… EN

T
im

e 
T

h
re

sh
o
ld

 (
T

T
h
)

…

EvtID Single Event Pattern
E2 Unknown: 82%, …
E3 Uniform-1: 97.3%, …
E4 P-edge: 98.7%, …

… …

Single Event Pattern for E1

Single Event Pattern for E2

EvtID Single Event Pattern
E1 Unknown: 52%, …
… …

…

Single Event Pattern Map

Fig. 8. Training process for correlations among fine-grained events.

transformation module finds ’write’ instructions for the value of the contexts and inserts call instruc-
tions of publish function with the arguments such as context identifier and value of the contexts.
For instance, the code transformation module inserts publish function that sends the value of
’Occupancy’ at runtime.

5 PCOEXTRACTOR RUNTIME
The PCoExtractor runtime consists of training and detection phases. In training phase, the PCoEx-
tractor runtime extracts dynamically defined correlations (Section 5.1.1) and trains correlations and
their transitions for each fine-grained event (Section 5.1.2). In detection phase, the PCoExtractor
runtime detects probable faulty devices that violate trained correlations and transitions (Section 5.2.1)
and identifies an actual faulty device with intersecting probable faulty devices (Section 5.2.2).

5.1 Training Phase
The training phase consists of three processes, disregarding non-correlated events, correlation training,
and transition training. The PCoExtractor runtime uses trained correlations among fine-grained events
to ignore meaningless correlations among irrelevant events.

5.1.1 Disregarding non-correlated Events. With fine-grained correlation representation in
Figure 5, the PCoExtractor runtime represents current status of IoT environment with a bit vector.
Each bit of the bit vector means a fine-grained event which is defined in Section 3. Thus, value of
each event representation can be zero or one. Therefore, this work categorizes each event’s patterns
into five patterns such as Occurred, P-edge, N-edge, Uniform-1, and Uniform-0. Occurred pattern
means that there is an unique bit with different value from others. P-edge represents the value of an
event is changed once from zero to one. N-edge has opposite meaning to P-edge. Uniform-1 indicates
all bits of an event in predefined time threshold is one and Uniform-0 has opposite meaning of that.
If the pattern is not one of proposed five patterns, then the PCoExtractor runtime marks it Unknown.

The PCoExtractor runtime checks other events’ patterns when the value of the target event bit is
changed. For example, Figure 8 shows a simple example of the correlation training process. When
the value of event 𝐸1 is changed from zero to one, the PCoExtractor runtime checks patterns of
other events (from 𝐸2 to 𝐸𝑁 ) in the predefined time threshold (𝑇𝑇ℎ). Then, the PCoExtractor runtime
generates a single event pattern map by checking the whole training data. If the occurrence rate of a
specific pattern exceeds the threshold, then the PCoExtractor runtime treats two events are correlated.

5.1.2 Correlation and Transition Training. After extracting correlated events, the PCoExtractor
runtime trains correlations and their transitions. The correlation database in Figure 9 contains a
list of correlated fine-grained events for each event using static and dynamic correlations from the

, Vol. 1, No. 1, Article . Publication date: September 2021.



12 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

③ Identify 

fault …

P3

P1

P2

0 1 1 1 1 0

0 1 1 0 0 1

1 1 1 0 1 0
…

E1 E2
…

P9

P4

P6

0 1 1 1

0 1 1 0

1 1 1 0
…

…

Correlation & Transition Database

P1

P2

E1

P2

P3
…

P6

P9

E2

P4

P4
…

…

…

E3

P5

P8

P8

P7

E3, E4, E6, E17, E21, E29E1

E4, E10, E12E2

…

Correlated Event Database

D1, D3, D11, D28 

Previous PFDs

D1, D4, D17 

Current PFDs

① Extract actually correlated events

② Check 

violation

1 0 1 1 1 0 0 0 1 0 0 1

Current Correlation: 0 1 0 1

Prev. Correlation: 0 1 1 1

Fig. 9. Failure detection and identification process of the PCoExtractor runtime. 𝐸𝑥 , 𝑃𝑥 , and 𝐷𝑥 mean
unique IDs of the fine-grained event, event pattern, and device. PFD means probable faulty devices.

PCoExtractor compiler and correlation training. At the correlation training phase, the PCoExtractor
runtime builds a new bit vector that contains bits of only correlated events from a bit vector in a
predefined time threshold. Then, the PCoExtractor runtime gives a correlation identifier for each
unique correlation and saves the correlation in the correlation database as shown in Figure 9.
Moreover, the PCoExtractor runtime trains the transitions among the correlations and saves all
possible transitions in the transition database.

Correlation and transition training methods of the PCoExtractor runtime do not need activity
labeling or user interventions that degrade the applicability and usability of the system. Also, the
PCoExtractor correlation and transition training are suitable for real-world IoT environments with
concurrent activities because the PCoExtractor runtime trains correlations among only correlated
fine-grained events to remove ambiguity from concurrent activities.

5.2 Detection Phase
In detection phase, the PCoExtractor runtime detects and identifies a faulty device in IoT environments
with trained correlations and transitions. Figure 9 shows overall process of faulty device detection
and identification.

5.2.1 Faulty Device Detection. To detect a faulty device, the PCoExtractor runtime uses correla-
tion and transition database and checks the current status of IoT environment is unfamiliar. When
a new event occurs, the PCoExtractor runtime updates the bit vector that contains whole bits of
fine-grained events. Then, the PCoExtractor runtime extracts a precise bit vector with only correlated
fine-grained events using a correlated event database (The arrow at the top of the Figure 9). For next,
the PCoExtractor runtime checks a current correlation (bit vector) exists in the correlation database
(The arrow of step 2 in the Figure 9). If the correlation exists, then the PCoExtractor runtime checks
the transition. If the correlation does not exist in the database, then the PCoExtractor runtime reports
device fault and starts the identification process. Checking transition is similar to checking correlation.
If there is a trained transition from the previous pattern to the current pattern, then the PCoExtractor
runtime finishes the detection process. If there is no matched transition, the PCoExtractor runtime
reports a device failure and proceeds the identification process.

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 13

5.2.2 Failure Identification. To identify a faulty device, the PCoExtractor runtime considers
two cases. If a correlation violation is detected in the detection process, the PCoExtractor runtime
compares the current correlation with all trained patterns. Then, the PCoExtractor runtime checks
the difference between the correlations and figures out the correlations that the differences of bits
are caused by a single device. As a result, the PCoExtractor runtime finds a set of IoT devices as
a set of probable faulty devices. If a transition violation is detected in the detection process, the
PCoExtractor runtime checks all possible transitions from the previous pattern. To specify a faulty
device, the PCoExtractor runtime checks all possible current correlations if there is no device fault
and transitions between previous and possible current correlations. Then, if the PCoExtractor runtime
finds the transition in the transition database, the PCoExtractor runtime adds another probable faulty
device that makes difference in the bit vector.

For each real-time event, the PCoExtractor runtime generates a set of probable faulty devices. To
reduce the number of candidates, the PCoExtractor runtime counts the number of occurrences of a
specific device in probable faulty device set. If the count exceeds the threshold, the PCoExtractor
runtime reports a faulty device to users.

6 EVALUATION
This work implements PCoExtractor on top of the LLVM compiler infrastructure [22]. To evaluate
PCoExtractor, this work designs and implements 4 real-world IoT services with 12 contexts and
collects the data from 68 devices. To prove that PCoExtractor extracts correlations, detects a device
failure, and identifies an exact faulty device precisely and efficiently, this work measures accuracy,
detection and identification time, and runtime delay of detection and identification processes. For the
evaluation, this work uses a desktop server (Intel Core i7-6700, 16GB) with Ubuntu 18.04.

6.1 Experimental Setup
This section describes four public datasets from Kasteren dataset [40] and CASAS dataset [9, 43] that
are also used by existing work [6, 19, 20, 47]. Moreover, this work deploys 68 devices in a laboratory
where 12 people work, implements and runs 4 IoT services with 12 contexts on the laboratory, and
generates two datasets with different combinations of the devices to validate PCoExtractor using
more realistic data containing concurrent activities.

6.1.1 Public Dataset. HouseA, HouseB, and HouseC datasets from Kasteren dataset [40] and
HH102 dataset from CASAS dataset [9, 43] contain the data collected in smart home. The datasets
such as HouseA, HouseB, and HouseC collect data from only binary sensors such as contact, motion,
pressure, and switch sensors, and show simple patterns of events due to the limited number of sensors
and binary sensor types. HH102 dataset includes data from multiple binary sensors, numeric sensors,
and actuators and generates various patterns and their transitions. However, the public datasets are
collected from testbeds with a single user who performs only one activity at a certain time. Moreover,
the public datasets do not contain static correlations written in IoT services.

6.1.2 Smart Lab Dataset. Although the Kasteren and CASAS datasets contain various activities
and a large amount of sensor data, the datasets still lack realistic features such as concurrent activities
from multiple users and the IoT services running on the testbed. Therefore, this work sets up a testbed
on a laboratory where 12 people work (referred as Smart Lab dataset). As shown in Figure 10, this
work deploys three kinds of multi-purpose sensors and air purifier. The sensors collect 11 types of
data such as motion, temperature, and etc. This work treats a sensing event of a deployed device as
an individual IoT device because each sensor in a device can be failed independently. The major
difference between the public datasets and Smart Lab dataset is that multiple users may perform

, Vol. 1, No. 1, Article . Publication date: September 2021.



14 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

Motion Sensor Multipurpose Sensor

Aeotec Multi Sensor Hue Bulb Air Purifier

Fig. 10. Floor plan of smart laboratory testbed

diverse activities at the same time, making the fault detectors hard to extract the correlations of the
events.

The Smart Lab dataset consists of two sub-datasets. The first dataset referred as Lab-large contains
all the deployed devices. With Lab-large dataset, this work can validate that PCoExtractor extracts
precise correlations efficiently in spite of a large number of devices. The second dataset referred as
Lab-small includes half of the deployed motion and multipurpose sensors, and uses all of Aeotec
multi-sensors, Hue bulbs, and air purifiers. Using Lab-small dataset, this work can prove that
PCoExtractor works well with lower correlation degree that indicates how many correlations exists
among the devices.

To make a realistic testbed, this work analyzes 287 SmartThings services [8, 29] and designs
services and contexts based on the commonly used services. Then, this work implements and runs 4
IoT services such as smart HVAC, smart light, smart surveillance, and smart alarm with 12 contexts
on the testbed.

Smart HVAC service checks that the laboratory is occupied and monitors temperature and
humidity of both inside and outside of the laboratory to alert users if temperature and humidity are
not in a normal range. Moreover, smart HVAC service monitors air quality, odor level, dust level, and
fine dust level of the laboratory and activates or deactivates the air purifiers.

Smart light service monitors the illuminance of both inside and outside of the laboratory and
turns on or off the Hue bulbs to maintain proper illuminance. Smart light service controls the bulbs
when only the laboratory is occupied.

Smart surveillance service checks if the laboratory is sealed when all users leave the laboratory
and alerts a user if the windows are open or the door is unlocked. Moreover, a smart surveillance
service reports an intrusion if someone tries to enter the laboratory in a predefined time.

Smart alarm service reads schedules from web calendar and alerts to a user before the schedule.
If the user is not in the seat, the smart alarm service sends a text message or push alarm based on the
importance of a schedule. If the user is in the seat, the smart alarm service blinks the Hue bulbs to
notify the user.

6.2 Evaluation Methods
This work chooses DICE [6] as a baseline because only DICE supports all types of IoT devices such
as binary sensor, numeric sensor, and actuator. For the evaluation, this work implements DICE with
C++ language same as PCoExtractor.

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 15

0

20

40

60

80

100

HouseA HouseB HouseC HH102 Lab-small Lab-large

D
et

ec
ti

o
n

 P
re

ci
si

o
n

 (
%

)

Baseline Baseline + fg evt Baseline + fg evt + fg ext Baseline + fg evt + fg ext + app

(a) Detection Precision

0

20

40

60

80

100

HouseA HouseB HouseC HH102 Lab-small Lab-large

D
et

ec
ti

o
n

 R
ec

al
l 

(%
)

Baseline Baseline + fg evt Baseline + fg evt + fg ext Baseline + fg evt + fg ext + app

(b) Detection Recall

Fig. 11. Precision and recall of device failure detection of PCoExtractor. fg evt means fine-grained
correlation representation, fg ext means fine-grained correlation extraction, and app means service
semantic-aware correlation extraction.

This work performs a training phase for 300 hours for public datasets and 500 hours for Lab
dataset. In the evaluation phase, this work generates random faults on the rest of the datasets; the fault
generator divides the provided datasets into 100 segments in time series, and randomly generates
five kinds of faults (fail-stop, outlier, spike, stuck-at, high-noise). To validate each contribution’s
effectiveness, this work incrementally applies fine-grained correlation representation, fine-grained
correlation extraction, and service semantic-awareness (static correlation and context extraction)
to baseline [6]. Then, the second method uses fine-grained event representation (Section 3). Next,
the third method applies fine-grained event representation with fine-grained correlation extraction
that finds meaningful correlations on all event occurrence (Section 5). Finally, the fourth method is
PCoExtractor that adapts all the contributions, including extracted static contexts (Section 4). This
work calculates precision and recall of detection and identification accuracy. This work also measures
detection and identification time, and computation delay of four versions.

6.3 Detection and Identification Accuracy
This section evaluates accuracy of detection and identification of PCoExtractor. To prove each
contribution’s effectiveness, this work measures precision and recall of detection and identification
in four versions. Figure 11 shows precision and recall of failure detection.

6.3.1 Detection Accuracy. Single user and sequential activity case: For HouseA, HouseB, and
HouseC, all versions show high precision due to the simplicity of the dataset. However, the recall
of HouseA is slightly lower than HouseB and HouseC because HouseA contains few correlations,
and correlation-based approaches may not detect some failures caused by a device with no or few
correlations. Precision and recall of HH102 show interesting results. Except for the second version,
all versions detect almost every failure, but the second version shows accuracy degradation with at a
large scale. Since HH102 contains a lot of sensors and fine-grained event type expands the bit vector
greatly, there is a huge number of possible patterns and transitions for the second version. Thus, the
second version may need additional training data to train all patterns and transitions. For single user
and sequential activity cases, both the baseline scheme and PCoExtractor achieve high precision and
recall.

Multiple user and concurrent activity case: To evaluate the accuracy of detection and identifi-
cation with concurrent activities, this work uses Lab-small and Lab-large datasets. Detection and
recall of four versions with Lab-small and Lab-large datasets in Figure 11a and Figure 11b show

, Vol. 1, No. 1, Article . Publication date: September 2021.



16 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

0

20

40

60

80

100

HouseA HouseB HouseC HH102 Lab-small Lab-large

Id
en

ti
fi

ca
ti

o
n

 P
re

ci
si

o
n

 (
%

)

Baseline Baseline + fg evt Baseline + fg evt + fg ext Baseline + fg evt + fg ext + app

(a) Identification Precision

0

20

40

60

80

100

HouseA HouseB HouseC HH102 Lab-small Lab-large

Id
en

ti
fi

ca
ti

o
n

 R
ec

al
l 

(%
)

Baseline Baseline + fg evt Baseline + fg evt + fg ext Baseline + fg evt + fg ext + app

(b) Identification Recall

Fig. 12. Precision and recall of device failure identification of PCoExtractor. fg evt means fine-grained
correlation representation, fg ext means fine-grained correlation extraction, and app means service
semantic-aware correlation extraction.

noticeable differences among four versions. These differences prove that each contribution actually
affects the accuracy of failure detection. As a result, PCoExtractor detects 40.06% more failures on
average than the baseline. Thus, PCoExtractor detects a faulty device more accurately in real-world
IoT environments with concurrent activities and each contribution of this paper improves detection
accuracy.

6.3.2 Identification Accuracy. Single user and sequential activity case: In Figure 12, precision
and recall of identification show similar aspects with precision and recall of detection for public
datasets. However, precision and recall of identification are lower than detection because the identifi-
cation needs a higher correlation degree and larger training data to remove ambiguous candidates
from probable faulty devices.

Multiple users and concurrent activity case: Figure 12 shows the results of precision and recall
of identification. For two Lab datasets, PCoExtractor identifies 108.3% more device failures than the
baseline. Moreover, each contribution improves the precision and recall of baseline noticeable. Since
the identification phase needs more precise correlations to specify a faulty device, PCoExtractor
successfully extracts precise correlations to identify a faulty device.

6.4 Detection and Identification Time
This work measures detection time as a time gap between actual device failure and the time that the
failure detector recognizes the failure, and identification time as a time gap from device failure to
identification of the faulty device. In Figure 13, PCoExtractor reduces the detection and identification
time extremely. PCoExtractor needs only 24.5% and 14.9% of detection and identification time
compared to baseline. In most cases, fine-grained event type reduces detection and identification
time greatly because the fine-grained correlation definition enables precise comparison between the
correlations.

6.5 Detection and Identification Delay
This work measures the computation delay of failure detection. Although the PCoExtractor achieves
higher precision and recall for failure detection and identification, the PCoExtractor also achieves
reduction of detection and identification delay due to removing non-correlated events. As described
in Section 5.2.1, failure detection consists of two phases: correlation check and transition check.
This work measures the execution time of fault detector on every event and takes the average of

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 17

0

5

10

15

20

25

30

35

HouseA HouseB HouseC HH102 Lab-small Lab-large

D
et

ec
ti

o
n

 T
im

e 
(m

in
u

te
)

Baseline Baseline + fg evt Baseline + fg evt + fg ext Baseline + fg evt + fg ext + app

(a) Detection Time

0

50

100

150

HouseA HouseB HouseC HH102 Lab-small Lab-large

Id
en

ti
fi

ca
ti

o
n

 T
im

e 
(m

in
u

te
)

Baseline Baseline + fg evt Baseline + fg evt + fg ext Baseline + fg evt + fg ext + app

(b) Identification Time

Fig. 13. Detection and identification time of PCoExtractor. fg evt means fine-grained correlation
representation, fg ext means fine-grained correlation extraction, and app means service semantic-
aware correlation extraction.

0

10

20

30

40

50

60

70

HouseA HouseB HouseC HH102 Lab-small Lab-large

D
et

ec
ti

o
n

 D
el

ay
 (
μ

s)

Pattern Transition
110.4 176.9

(a) Detection Delay

0

50

100

150

200

250

300

350

HouseA HouseB HouseC HH102 Lab-small Lab-large

Id
en

ti
fi

ca
ti

o
n

 D
el

ay
 (
μ

s)

Pattern Transition

(b) Identification Delay

Fig. 14. Detection and identification delay. Pattern means the delay caused by correlation check and
Transition means the delay caused by transition check.

the calculation time. As shown in Figure 14, PCoExtractor dramatically reduces runtime delay
by reducing the length of bit vectors. The training phase (Section 5.1.2) of this work select only
correlated events from the bit vectors. There is no need to compare every correlation that might be
non-correlated to the current bit vector. Consequently, the search space of correlation and transition
check shrinks, reducing runtime delay of failure detection.

7 RELATED WORK
Security Analysis of IoT Devices and Platforms: There have been extensive security analyses on
both IoT devices [14, 21, 42] and platforms [10, 50].

IoT devices may fail due to malicious attacks [21, 42] or their own faults [14]. Kumar et al. [21]
performs large-scale empirical analysis on 83M IoT devices around the world. As a result, a significant
fraction of devices is still using weak credentials with insecure FTP/Telnet protocols and vulnerable
to known attacks. Compromised IoT devices can not only end on their own failures but can damage
other devices (MadIoT [36]) or be exploited for massive DDoS attacks (Mirai botnet [2]). Hnat
et al. [14] observed over 350 sensors across 20 homes for 8 months and reported various failures
such as process failures, link loss, and sensor failures. Nevertheless, device vendors are small or
medium-sized businesses, so they have little incentive to take firm security infrastructures such as
monitoring agents and security hardware [42].

, Vol. 1, No. 1, Article . Publication date: September 2021.



18 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

Not only IoT devices but also IoT platform itself has its own vulnerabilities [10, 50]. For example,
an attacker can remotely replace a victim’s real device with a phantom device. This attack may cause
the phantom device to send the wrong data, thus deceiving the victim user. This will lead to service
failures and put the victim users at risk. Through security analysis of the widely-used Samsung
SmartThings IoT platform [35], Fernandes et al. [10] address the overprivileged problem caused by
its coarse-grained permission model based on functionally-grouped capabilities. Without any special
privileges, an IoT service on the platform can read all events of the device if it is granted with at least
one capability. The SmartThings platform also does not verify the event source, so an attacker can
spoof physical device events by easily identifying the device identifier.

Therefore, the device failure occurs due to the device’s own fault, external attack, or the vulnerable
platform, which can lead to service failures and further endanger the user.

Device Failure Management in IoT: There have been various solutions [3, 5, 6, 12, 19, 20, 24–
27, 33, 45–47] on how to manage a device failure for preventing a service failure.

To detect a faulty device in the IoT, previous work [5, 6, 12, 19, 20, 24–26, 33, 37, 45–48] propose
failure detection schemes based on various correlations of events, sensors and actuators. Against
an attacker who is able to spoof events, Peeves [5] learns correlations between events on collected
data set without attacks, and classifies whether events are normal at runtime. FailureSense [25]
correlates electrical appliances with associated sensor events and learn the regular patterns of sensing
events and appliance activation events, then monitors a significant deviation from the regularity
at runtime. CLEAN [45–47] clusters sensors based on the similarity of sensor events and detects
sensor failure by detecting outlier. DICE [6] represents a state as a set of sensing values at a time and
defines correlated sensors as a group of sensors with the same states for a certain period. DICE also
checks probabilities of transitions from one state to the other states to detect sensor abnormalities.
6thSense [33] defines correlation as sensors associated with activity that occurs while using a
smartphone. Other works [37, 48] find an anomaly from IoT environment by analyzing continuous
sensor data with correlation coefficient. They extract correlations from continuous values of numeric
sensors and find anomalies that violate the trained correlations.

Some work [19, 20] uses service-level contexts by analyzing IoT services. SMART [19] uses
application semantics to detect and recover sensor failures. Although SMART considers service-level
failures to train the failure detector, SMART does not use correlations among sensors. Compared
to SMART, this work extract correlations among sensors by looking at services. Idea [20] detects
redundant sensors in an Activity of Daily Living (ADL; context in this work) and excludes failing
sensors to detect the context. Although the previous schemes use ADL rules that contain correlated
sensor groups, the previous methods are not adequate to distinguish concurrent and multi-user
activities which are not actually correlated. Conversely, this work eliminates the ambiguity of the
correlations by discarding inessential events.

Once device failure is detected, fault-tolerant systems such as IoTRepair [27] and Rivulet [3]
recover the failure or keep the service working normally. With the failure handling library such
as replication, retry, restart, checkpoint, and rollback, IoTRepair [27] can autonomously handle
various device failures. Rivulet [3] is a fault-tolerant distributed system that utilizes redundant smart
consumer appliances to execute an IoT service reliably by replicating the events across appliances.
This work can be integrated with the IoTRepair or Rivulet to provide a more reliable IoT service
with the proposed highly accurate and efficient failure detection scheme.

Activity Recognition in IoT: IoT frameworks use contexts to identify how users currently be-
have and provide IoT services based on the information. To extract the users’ contexts, recent
publications [4, 7, 23, 30, 38, 39, 44] have proposed the systems that recognize human activities
for multi-user environments. Some approaches [4, 30] propose unsupervised recognition methods
to identify complex ADL by deriving semantic reasoning between sensors and activities. Other

, Vol. 1, No. 1, Article . Publication date: September 2021.



Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 19

approaches [7, 38, 44] extend unsupervised learning by using cloud-edge-based IoT frameworks
that collect feedbacks from multiple distinct environments and refine correlations and semantics of
sensors and activities. Supervised or semi-supervised learning methods [23, 39] are the alternatives
of the context extraction. This work currently uses contexts from analysis of static IoT services. By
adopting the proposed machine learning-based approaches, this work can improve the precision of
contexts.

Correlation-based Failure Detection: Two existing works [13, 41] propose correlation-based
anomaly detection methods for specific systems such as adaptive system and Web applications in
cloud computing. Although their whole methods are not directly applicable for IoT environments,
their core concepts that compute correlation coefficient may improve PCoExtractor. AdaptGuard [13]
extracts causality assumptions between variables in adaptive systems, calculates correlation coef-
ficient among them, and detects an assumption violation that harms stability of the system. Tao et
el. [41] proposes an automatic fault diagnosis method for Web applications in cloud computing.
The work models the correlations between workloads and metrics related to the application perfor-
mance and resource utilization and detects anomalies by recognizing abrupt change of correlation
coefficients.

8 CONCLUSION
This work proposes a new compiler-assisted correlation extraction scheme, named PCoExtractor.
PCoExtractor newly defines a fine-grained correlation representation with the context to support
precise correlation extraction with concurrent activities. To easily reflect high-level information
in IoT services, the PCoExtractor compiler automatically extracts contexts and statically defined
correlations from the services. The PCoExtractor runtime traces reactions of sensors, actuators,
and contexts during a series of multiple concurrent activities without any time window, excludes
non-correlated devices that inconsistently react for the same activities, and construct fine-grained
correlations. Finally, the runtime detects a faulty device that violates trained correlations and their
transitions. PCoExtractor detects and identifies 40.06% more faults for 4 IoT services with concurrent
activities of 12 users. Moreover, PCoExtractor reduces 80.3% of detection and identification time
with only 181.7 𝜇s delay.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feedback. We also thank the CoreLab and
HPC Lab members for their support and feedback during this work. This work is supported by
IITP-2020-0-01847, IITP-2020-0-01361 and IITP-2021-0-00853 through the Institute of Information
and Communication Technology Planning and Evaluation (IITP) funded by the Ministry of Science
and ICT. This work is also supported by Samsung Electronics. (Corresponding author: Hanjun Kim)

REFERENCES
[1] AllJoyn 2018. AllJoyn. Retrieved April 20, 2020 from https://github.com/alljoyn/alljoyn.github.com/wiki
[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric,

J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian
Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the Mirai Botnet. In 26th
USENIX Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 1093–1110.

[3] Masoud Saeida Ardekani, Rayman Preet Singh, Nitin Agrawal, Douglas B. Terry, and Riza O. Suminto. 2017. Rivulet:
A Fault-tolerant Platform for Smart-home Applications. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference (Las Vegas, Nevada) (Middleware ’17). ACM, New York, NY, USA, 41–54. https://doi.org/10.1145/
3135974.3135988

[4] G. Azkune and A. Almeida. 2018. A Scalable Hybrid Activity Recognition Approach for Intelligent Environments.
IEEE Access 6 (2018), 41745–41759. https://doi.org/10.1109/ACCESS.2018.2861004

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://github.com/alljoyn/alljoyn.github.com/wiki
https://doi.org/10.1145/3135974.3135988
https://doi.org/10.1145/3135974.3135988
https://doi.org/10.1109/ACCESS.2018.2861004


20 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

[5] Simon Birnbach, Simon Eberz, and Ivan Martinovic. 2019. Peeves: Physical Event Verification in Smart Homes.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (London, United
Kingdom) (CCS ’19). Association for Computing Machinery, New York, NY, USA, 1455–1467. https://doi.org/10.
1145/3319535.3354254

[6] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim. 2018. Detecting and Identifying Faulty IoT Devices in
Smart Home with Context Extraction. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). 610–621. https://doi.org/10.1109/DSN.2018.00068

[7] G. Civitarese, C. Bettini, T. Sztyler, D. Riboni, and H. Stuckenschmidt. 2018. NECTAR: Knowledge-based Collaborative
Active Learning for Activity Recognition. In 2018 IEEE International Conference on Pervasive Computing and
Communications (PerCom). 1–10. https://doi.org/10.1109/PERCOM.2018.8444590

[8] CommunitySmartapps 2021. SmartThings Smartapps from Community. Retrieved August 1, 2020 from https:
//community.smartthings.com

[9] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan. 2013. CASAS: A Smart Home in a Box. Computer 46, 7
(July 2013), 62–69. https://doi.org/10.1109/MC.2012.328

[10] E. Fernandes, J. Jung, and A. Prakash. 2016. Security Analysis of Emerging Smart Home Applications. In 2016 IEEE
Symposium on Security and Privacy (SP). 636–654. https://doi.org/10.1109/SP.2016.44

[11] N. Ghosh, S. Chandra, V. Sachidananda, and Y. Elovici. 2019. SoftAuthZ: A Context-Aware, Behavior-Based Au-
thorization Framework for Home IoT. IEEE Internet of Things Journal 6, 6 (Dec 2019), 10773–10785. https:
//doi.org/10.1109/JIOT.2019.2941767

[12] Shuo Guo, Ziguo Zhong, and Tian He. 2009. FIND: Faulty Node Detection for Wireless Sensor Networks. In Proceedings
of the 7th ACM Conference on Embedded Networked Sensor Systems (Berkeley, California) (SenSys ’09). ACM, New
York, NY, USA, 253–266.

[13] Jin Heo and Tarek Abdelzaher. 2009. Adaptguard: Guarding adaptive systems from instability. 77–86. https://doi.org/
10.1145/1555228.1555256

[14] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I. Sookoor, Raymond Dawson, John Stankovic, and Kamin
Whitehouse. 2011. The Hitchhiker’s Guide to Successful Residential Sensing Deployments. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems (Seattle, Washington) (SenSys ’11). Association for
Computing Machinery, New York, NY, USA, 232–245.

[15] Casen Hunger, Lluis Vilanova, Charalampos Papamanthou, Yoav Etsion, and Mohit Tiwari. 2018. DATS - Data
Containers for Web Applications. In Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY,
USA, 722–736. https://doi.org/10.1145/3173162.3173213

[16] IFTTT 2021. IFTTT. Retrieved May 10, 2019 from https://ifttt.com/
[17] IoTivity 2021. IoTivity. Retrieved May 10, 2019 from https://iotivity.org
[18] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes, Z. Morley Mao, and Atul Prakash.

2017. ContexIoT: Towards Providing Contextual Integrity to Appified IoT Platforms. In 21st Network and Distributed
Security Symposium.

[19] Krasimira Kapitanova, Enamul Hoque, John A. Stankovic, Kamin Whitehouse, and Sang H. Son. 2012. Being SMART
About Failures: Assessing Repairs in SMART Homes. In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing (Pittsburgh, Pennsylvania) (UbiComp ’12). ACM, New York, NY, USA, 51–60. https://doi.org/10.1145/
2370216.2370225

[20] Palanivel A. Kodeswaran, Ravi Kokku, Sayandeep Sen, and Mudhakar Srivatsa. 2016. Idea: A System for Efficient
Failure Management in Smart IoT Environments. In Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services (Singapore, Singapore) (MobiSys ’16). ACM, New York, NY, USA, 43–56.
https://doi.org/10.1145/2906388.2906406

[21] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich, Dmitry Kuznetsov, Rajarshi Gupta, and
Zakir Durumeric. 2019. All Things Considered: An Analysis of IoT Devices on Home Networks. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1169–1185.

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Trans-
formation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–86.
http://dl.acm.org/citation.cfm?id=977395.977673

[23] J. Liono, F. D. Salim, N. van Berkel, V. Kostakos, and A. K. Qin. 2019. Improving Experience Sampling with
Multi-view User-driven Annotation Prediction. In 2019 IEEE International Conference on Pervasive Computing and
Communications (PerCom). 1–11. https://doi.org/10.1109/PERCOM.2019.8767394

[24] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and S. Tarkoma. 2017. IoT SENTINEL: Automated
Device-Type Identification for Security Enforcement in IoT. In 2017 IEEE 37th International Conference on Distributed

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/3319535.3354254
https://doi.org/10.1145/3319535.3354254
https://doi.org/10.1109/DSN.2018.00068
https://doi.org/10.1109/PERCOM.2018.8444590
https://community.smartthings.com
https://community.smartthings.com
https://doi.org/10.1109/MC.2012.328
https://doi.org/10.1109/SP.2016.44
https://doi.org/10.1109/JIOT.2019.2941767
https://doi.org/10.1109/JIOT.2019.2941767
https://doi.org/10.1145/1555228.1555256
https://doi.org/10.1145/1555228.1555256
https://doi.org/10.1145/3173162.3173213
https://ifttt.com/
https://iotivity.org
https://doi.org/10.1145/2370216.2370225
https://doi.org/10.1145/2370216.2370225
https://doi.org/10.1145/2906388.2906406
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/PERCOM.2019.8767394


Precise Correlation Extraction for IoT Fault Detection with Concurrent Activities 21

Computing Systems (ICDCS). 2177–2184. https://doi.org/10.1109/ICDCS.2017.283
[25] S. Munir and J. A. Stankovic. 2014. FailureSense: Detecting Sensor Failure Using Electrical Appliances in the Home.

In 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. 73–81. https://doi.org/10.1109/
MASS.2014.16

[26] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A. Sadeghi. 2019. DÏoT: A Federated Self-
learning Anomaly Detection System for IoT. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). 756–767. https://doi.org/10.1109/ICDCS.2019.00080

[27] M. Norris, B. Celik, P. Venkatesh, S. Zhao, P. McDaniel, A. Sivasubramaniam, and G. Tan. 2020. IoTRepair: Sys-
tematically Addressing Device Faults in Commodity IoT. In 2020 IEEE/ACM Fifth International Conference on
Internet-of-Things Design and Implementation (IoTDI). 142–148.

[28] openHAB 2021. openHAB. Retrieved August 1, 2020 from https://www.openhab.org
[29] PublicSmartapps 2021. SmartThings Public Smartapps. Retrieved August 1, 2020 from https://github.com/

SmartThingsCommunity/SmartThingsPublic
[30] Daniele Riboni, Timo Sztyler, Gabriele Civitarese, and Heiner Stuckenschmidt. 2016. Unsupervised Recognition of

Interleaved Activities of Daily Living through Ontological and Probabilistic Reasoning. In Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous Computing (Heidelberg, Germany) (UbiComp ’16).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/2971648.2971691

[31] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational Access Control in the Internet of Things. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). ACM, New York, NY, USA, 1056–1073. https://doi.org/10.1145/3243734.3243817

[32] Chenguang Shen, Rayman Preet Singh, Amar Phanishayee, Aman Kansal, and Ratul Mahajan. 2016. Beam: Ending
Monolithic Applications for Connected Devices. In 2016 USENIX Annual Technical Conference (USENIX ATC 16).
USENIX Association, Denver, CO, 143–157. https://www.usenix.org/conference/atc16/technical-sessions/presentation/
shen

[33] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2017. 6thSense: A Context-aware Sensor-based Attack
Detector for Smart Devices. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 397–414. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sikder

[34] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. 2019. Aegis: A Context-Aware Security
Framework for Smart Home Systems. In Proceedings of the 35th Annual Computer Security Applications Conference
(San Juan, Puerto Rico) (ACSAC ’19). Association for Computing Machinery, New York, NY, USA, 28–41. https:
//doi.org/10.1145/3359789.3359840

[35] SmartThings 2020. Samsung SmartThings. Retrieved May 10, 2019 from http://www.smartthings.com
[36] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. 2018. BlackIoT: IoT Botnet of High Wattage Devices Can Disrupt the

Power Grid. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 15–32.
[37] Shen Su, Yanbin Sun, Xiangsong Gao, Jing Qiu, and Zhihong Tian. 2019. A Correlation-Change Based Feature Selection

Method for IoT Equipment Anomaly Detection. Applied Sciences 9, 3 (2019). https://doi.org/10.3390/app9030437
[38] X. Su, P. Li, J. Riekki, X. Liu, J. Kiljander, J. Soininen, C. Prehofer, H. Flores, and Y. Li. 2018. Distribution of Semantic

Reasoning on the Edge of Internet of Things. In 2018 IEEE International Conference on Pervasive Computing and
Communications (PerCom). 1–9. https://doi.org/10.1109/PERCOM.2018.8444596

[39] Tao Gu, Zhanqing Wu, Xianping Tao, H. K. Pung, and Jian Lu. 2009. epSICAR: An Emerging Patterns based approach
to sequential, interleaved and Concurrent Activity Recognition. In 2009 IEEE International Conference on Pervasive
Computing and Communications. 1–9. https://doi.org/10.1109/PERCOM.2009.4912776

[40] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse. 2011. Human Activity Recognition from Wireless Sensor
Network Data: Benchmark and Software. Atlantis Press, Paris, 165–186. https://doi.org/10.2991/978-94-91216-05-3_8

[41] Tao Wang, Wenbo Zhang, Jun Wei, and Hua Zhong. 2015. Fault detection for cloud computing systems with correlation
analysis. In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). 652–658. https:
//doi.org/10.1109/INM.2015.7140351

[42] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. 2019. Looking from the Mirror: Evaluating
IoT Device Security through Mobile Companion Apps. In 28th USENIX Security Symposium (USENIX Security 19).
USENIX Association, Santa Clara, CA, 1151–1167.

[43] WSU CASAS Datasets 2020. WSU CASAS Datasets. Retrieved August 1, 2020 from http://casas.wsu.edu/datasets/
[44] J. Ye. 2018. SLearn: Shared learning human activity labels across multiple datasets. In 2018 IEEE International

Conference on Pervasive Computing and Communications (PerCom). 1–10. https://doi.org/10.1109/PERCOM.2018.
8444594

[45] J. Ye, G. Stevenson, and S. Dobson. 2015. Fault detection for binary sensors in smart home environments. In 2015 IEEE
International Conference on Pervasive Computing and Communications (PerCom). 20–28. https://doi.org/10.1109/
PERCOM.2015.7146505

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1109/ICDCS.2017.283
https://doi.org/10.1109/MASS.2014.16
https://doi.org/10.1109/MASS.2014.16
https://doi.org/10.1109/ICDCS.2019.00080
https://www.openhab.org
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://doi.org/10.1145/2971648.2971691
https://doi.org/10.1145/3243734.3243817
https://www.usenix.org/conference/atc16/technical-sessions/presentation/shen
https://www.usenix.org/conference/atc16/technical-sessions/presentation/shen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sikder
https://doi.org/10.1145/3359789.3359840
https://doi.org/10.1145/3359789.3359840
http://www.smartthings.com
https://doi.org/10.3390/app9030437
https://doi.org/10.1109/PERCOM.2018.8444596
https://doi.org/10.1109/PERCOM.2009.4912776
https://doi.org/10.2991/978-94-91216-05-3_8
https://doi.org/10.1109/INM.2015.7140351
https://doi.org/10.1109/INM.2015.7140351
http://casas.wsu.edu/datasets/
https://doi.org/10.1109/PERCOM.2018.8444594
https://doi.org/10.1109/PERCOM.2018.8444594
https://doi.org/10.1109/PERCOM.2015.7146505
https://doi.org/10.1109/PERCOM.2015.7146505


22 Gyeongmin Lee, Bongjun Kim, Seungbin Song, Changsu Kim, Jong Kim, and Hanjun Kim

[46] J. Ye, G. Stevenson, and S. Dobson. 2015. Using temporal correlation and time series to detect missing activity-driven
sensor events. In 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops). 44–49. https://doi.org/10.1109/PERCOMW.2015.7133991

[47] Juan Ye, Graeme Stevenson, and Simon Dobson. 2016. Detecting abnormal events on binary sensors in smart home
environments. Pervasive and Mobile Computing 33 (2016), 32 – 49. https://doi.org/10.1016/j.pmcj.2016.06.012

[48] Pushe Zhao, Masaru Kurihara, Junichi Tanaka, Tojiro Noda, Shigeyoshi Chikuma, and Tadashi Suzuki. 2017. Advanced
correlation-based anomaly detection method for predictive maintenance. In 2017 IEEE International Conference on
Prognostics and Health Management (ICPHM). 78–83. https://doi.org/10.1109/ICPHM.2017.7998309

[49] S. Zhou, K. Lin, J. Na, C. Chuang, and C. Shih. 2015. Supporting Service Adaptation in Fault Tolerant Internet of
Things. In 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications (SOCA). 65–72.
https://doi.org/10.1109/SOCA.2015.38

[50] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and Yuqing Zhang. 2019. Discovering
and Understanding the Security Hazards in the Interactions between IoT Devices, Mobile Apps, and Clouds on Smart
Home Platforms. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
1133–1150.

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1109/PERCOMW.2015.7133991
https://doi.org/10.1016/j.pmcj.2016.06.012
https://doi.org/10.1109/ICPHM.2017.7998309
https://doi.org/10.1109/SOCA.2015.38

	Abstract
	1 Introduction
	2 Motivation
	2.1 Correlation-based Faulty Device Detection
	2.2 Limitations of Existing Schemes

	3 Fine-grained Correlation Representation
	4 PCoExtractor Compiler
	4.1 Programming Model of PCoExtractor 
	4.2 Overall Structure
	4.3 Context Extraction
	4.4 Static Correlation Extraction
	4.5 Finalization

	5 PCoExtractor Runtime
	5.1 Training Phase
	5.2 Detection Phase

	6 Evaluation
	6.1 Experimental Setup
	6.2 Evaluation Methods
	6.3 Detection and Identification Accuracy
	6.4 Detection and Identification Time
	6.5 Detection and Identification Delay

	7 Related Work
	8 Conclusion
	References

